Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

УТВЕРЖДАЮ

Руководитель программы аспирантуры

В.Э. Вильдеман д.ф.-м.н., проф., зав.каф. ЭМКМ

«20 » « Маеч » 2022 г.

Рабочая программа дисциплины по программе аспирантуры

«Моделирование процессов деформирования и разрушения материалов и элементов конструкций»

Научная специальность

1.1.8. Механика деформируемого твердого тела

Направленность (профиль) программы

аспирантуры

Выпускающая(ие) кафедра(ы)

Механика деформирования и разрушения твердых

тел

Экспериментальная механика и конструкционное

материаловедение (ЭМКМ)

Механика композиционных материалов и

конструкций (МКМК)

Форма обучения

Kypc: 2

Очная

Семестр (ы): 4

Виды контроля с указанием семестра:

Экзамен:

Зачет: 4

Диф.зачет

1. Общие положения

Рабочая программа дисциплины «Моделирование процессов деформирования и разрушения материалов и элементов конструкций» разработана на основании следующих нормативных документов:

- Приказ Минобрнауки России от 20.10.2021 N 951 "Об утверждении федеральных государственных требований к структуре программ подготовки научных и научно-педагогических кадров в аспирантуре (адъюнктуре), условиям их реализации, срокам освоения этих программ с учетом различных форм обучения, образовательных технологий и особенностей отдельных категорий аспирантов (адъюнктов)";
- Постановление Правительства РФ от 30.11.2021 N 2122 "Об утверждении Положения о подготовке научных и научно-педагогических кадров в аспирантуре (адъюнктуре)";
- Самостоятельно устанавливаемые требования к реализуемым программам подготовки научных и научно-педагогических кадров в аспирантуре Пермского национального исследовательского политехнического университета;
- Базовый план по программе аспирантуры;
- Паспорт научной специальности.
- 1.1 Цель учебной дисциплины формирование комплекса знаний, умений и навыков о закономерностях процессов возникновения и развития структурных повреждений материалов, умений и навыков разработки уравнений и критериев, адекватно описывающих микро- и макромеханизмы разрушений, изучение условий взаимодействия структурных элементов с учетом технологических особенностей схем армирования и статистических факторов, методик проведения вычислительных экспериментов, анализа и диагностики повреждений, необходимых при проектировании и создании композиционных материалов, а также эксплуатация изделий из них.

1.2 Место учебной дисциплины в структуре образовательной программы

Дисциплина «Моделирование процессов деформирования и разрушения материалов и элементов конструкций» является дисциплиной по выбору образовательного компонента плана аспиранта.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате изучения дисциплины аспирант должен демонстрировать следующие результаты:

Знать:

- теоретические и экспериментальные методы изучения деформационных и прочностных свойств композиционных материалов;
- основные явления микроразрушения;
- математические модели механизмов накопления повреждений в материалах;
- функции поврежденности;

Уметь:

- проводить анализ микромеханизмов разрушения структурно-неоднородных сред с учетом технологических форм;
- классифицировать виды разрушений;

Владеть:

- навыками использования испытательной и вычислительной техники;
- навыками прогнозирования эффективных прочностных свойств;
- навыками оценки прочности при сложном напряженном состоянии;

3. Структура учебной дисциплины по видам и формам учебной работы

Таблица 1

Объем и виды учебной работы

№ п.п.	Вид учебной работы	Трудоемкость, ч
		4 семестр
1	Аудиторная работа	21
	В том числе:	
	Лекции (Л)	
	Практические занятия (ПЗ)	16
2	Контроль самостоятельной работы (КСР)	5
	Самостоятельная работа (СР)	51
	Форма итогового контроля:	Зачет

4. Содержание учебной дисциплины

4.1. Содержание разделов и тем учебной дисциплины

Раздел 1. Основы понятия и исходные положения. Модели механического поведения материалов

 $(\Pi 3 - 6, CP - 26)$

- Тема 1. Актуальность исследований в области механики разрушения композитов. Разрушение и поврежденность. Многоуровневый анализ поврежденности. Цели проектирования. Характеристики идеальной конструкции с точки зрения прочностного анализа, критерии экономичности и безопасности. Системы для испытаний.
- Тема 2. Классификация видов разрушения. Виды механического разрушения. Стадии процессов накопления повреждений композиционных материалов. Многоуровневый и многостадийный характер накопления повреждений. Особенности процессов разрушения волокнистых композитов. Распределение напряжений около краев разорванного волокна. Неэффективная длина волокна.
- Тема 3. Феноменологические и структурные модели накопления повреждений. Принципы создания математических моделей процессов деформирования и разрушения. Сруктурно-феноменологический подход механики композитов. Схемы расчета конструкций из композиционных материалов с оценкой поврежденности в рамках структурно-феноменологического подхода.
- Тема 4. Статистический характер процессов разрушения. Статистические законы распределения случайных прочностных констант.
- Тема 5. Модели, основанные на введении скалярной меры повреждений. Правило линейного суммирования повреждений. Гипотезы нелинейного накопления повреждений. Параметр поврежденности Качанова-Работнова. Континуальные модели повреждений.
- Тема 6. Скалярная функция поврежденности. Функция поврежденности как тензор второго ранга. Тензор поврежденности четвертого ранга. Тензор поврежденности трансверсально-изотропного материала, не изменяющего тип анизотропии в процессе деформирования. Повреждаемый ортотропный материал.
- Раздел 2. Стадии процессов разрушения материалов. Моделирование процессов деформирования и разрушения материалов.

 $(\Pi 3 - 10, CP - 25)$

- Тема 7. Критериальная оценка прочности при сложном напряженном состоянии. Модели многостадийных процессов структурного разрушения. Моделирование разрушения по совокупности критериев. Схемы изменения характеристик и стадии процесса разрушения изотропного материала. Схемы изменения характеристик и стадии процесса разрушения трансверсально-изотропного материала.
- Тема 8. Схемы изменения характеристик и стадии процесса разрушения ортотропного материала. Моделирование потери несущей способности армированнного монослоя.
- Тема 9. Краевая задача механики неупругого деформирования и разрушения структурнонеоднородных тел. Методы решения физически нелинейных задач. Алгоритмизация описания процессов разрушения, процедура пошагового нагружения. Прогнозирование эффективных материальных функций неупругого деформирования. Прогнозирование эффективных прочностных свойств.
- Тема 10. Моделирование процессов деформирования и разрушения слоистых композитов. Слоистые композиты с изотропными слоями. Слоистые композиты с ортотропными слоями.
- Тема 11. Моделирование процессов деформирования и разрушения волокнистых композитов при нагружении в поперечной плоскости.
- Тема 12. Общие сведения о механике распространения трещин. Энергетический и силовой подходы механики хрупкого разрушения.
- Тема 13. Закритическое деформирование и разрушение. Нагружающая система. Оценка устойчивости накопления повреждений. Оценка безопасности конструкций и сооружений.

4.2. Перечень тем практических занятий

Таблица 2

Темы практических занятий (из пункта 4.1)

№ п.п.	Номер темы дисциплины	Наименование темы практического занятия	Наименование оценочного средства	Представление оценочного средства
1	2	Распределение напряжений около краев разорванного волокна. Неэффективная длина волокна.	Собеседование. Творческое задание.	Вопросы по темам / разделам дисциплины. Темы творческих заданий.
2	4	Статистические законы распределения случайных прочностных констант.	Собеседование. Творческое задание.	Вопросы по темам / разделам дисциплины. Темы творческих заданий.
3	6	Скалярная функция поврежденности.	Собеседование. Творческое задание.	Вопросы по темам / разделам дисциплины. Темы творческих заданий.
4	7	Моделирование разрушения по совокупности критериев.	Собеседование. Творческое задание.	Вопросы по темам / разделам дисциплины.

				Темы творческих заданий.
5	8	Моделирование потери несущей способности армированнного монослоя.	Собеседование. Творческое задание.	Вопросы по темам / разделам дисциплины. Темы творческих заданий.
6	9	Методы решения физически нелинейных задач. Алгоритмизация описания процессов разрушения, процедура пошагового нагружения.	Собеседование. Творческое задание.	Вопросы по темам / разделам дисциплины. Темы творческих заданий.
7	11	Моделирование процессов деформирования и разрушения волокнистых композитов при нагружении в поперечной плоскости.	Собеседование. Творческое задание.	Вопросы по темам / разделам дисциплины. Темы творческих заданий.
8	13	Оценка устойчивости накопления повреждений.	Собеседование. Творческое задание.	Вопросы по темам / разделам дисциплины. Темы творческих заданий.

4.3. Перечень тем для самостоятельной работы аспирантовСамостоятельная работа аспирантов заключается в теоретическом изучении конкретных вопросов и выполнении творческих заданий.

Таблица 3 Темы самостоятельных заданий

№	Номер темы	Наименование темы	Наименование	Представление
п.п.	дисциплины	самостоятельной работы	оценочного	оценочного
			средства	средства
1	1	Системы для испытаний	Собеседование	Вопросы по темам / разделам дисциплины
2	2	Многостадийный характер накопления повреждений	Собеседование	Вопросы по темам / разделам дисциплины
3	3	Схемы расчета конструкций из композиционных материалов с оценкой поврежденности в рамках структурнофеноменологического подхода	Собеседование	Вопросы по темам / разделам дисциплины
4	5	Континуальные модели повреждений	Собеседование	Вопросы по темам / разделам дисциплины
5	7	Схемы изменения характеристик и стадии процесса разрушения изотропного материала	Собеседование	Вопросы по темам / разделам дисциплины

6	8	Стадии процесса разрушения	Собеседование	Вопросы по темам /
		ортотропного материала		разделам
				дисциплины
7	10	Слоистые композиты с	Собеседование	Вопросы по темам /
		ортотропными слоями		разделам
				дисциплины
8	12	Силовой подход механики	Собеседование	Вопросы по темам /
		хрупкого разрушения		разделам
				дисциплины

5. Методические указания для аспирантов по изучению дисциплины

При изучении дисциплины «Моделирование процессов деформирования и разрушения материалов и элементов конструкций» аспирантам целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически;
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела;
- 3. Вся тематика вопросов, изучаемых самостоятельно, задается преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции;

6. Перечень учебно-методического, библиотечно-справочного и информационного, информационно-справочного обеспечения для работы аспиранта по дисциплине

6.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

		Количество			
	Библиографическое описание	экземпляров в			
No	(автор, заглавие, вид издания, место, издательство,	библиотеке+кафедре;			
	год издания, количество страниц)	местонахождение			
		электронных изданий			
1	2	3			
	1 Основная литература				
	Основы нанотехнологии в технике : учебное пособие для вузов				
	/ А. Н. Ковшов, Ю. Ф. Назаров, И. М. Ибрагимов . — Москва :				
1	Академия, 2009. — 239 с. : ил .— (Высшее профессиональное	1.4			
1	образование, Машиностроение) .— Посвящается 75-летию	14			
	Московского государственного открытого университета .—				
	Библиогр.: с. 238.				
	Механика материалов. Методы и средства экспериментальных				
	исследований / В. Э. Вильдеман [и др.]; Пермский				
2	национальный исследовательский политехнический	36 + ЭБ			
	университет; Под ред. В. Э. Вильдемана. — Пермь: Изд-во				
	ПНИПУ, 2011. — 164 с				
3	Кривцов А.М. Деформирование и разрушение твердых тел с	2			
3	микроструктурой. М.: Физматлит, 2007.	2			
	2 Дополнительная литература				
	2.1 Учебные и научные издания				

Nº	Библиографическое описание (автор, заглавие, вид издания, место, издательство, год издания, количество страниц)	Количество экземпляров в библиотеке+кафедре; местонахождение электронных изданий
1	2	3
1	Вильдеман В.Э. Моделирование процессов деформирования и разрушения композитов. Ч.1.: Модели накопления повреждений: Учебн. пособие. – Пермь: Перм. гос. техн. ун-т, 2000. – 76 с.	50
2	Вильдеман В.Э. Моделирование процессов деформирования и разрушения композитов. Ч.2.: Основы математической теории закритической деформации разупрочняющих сред: Учебн. пособие. – Пермь: Перм. гос. техн. ун-т, 2000. – 70 с.	50
3	Вильдеман В.Э. Моделирование процессов деформирования и разрушения композитов. Ч.З.: Закритическое деформирование структурных элементов: Учебн. пособие. – Пермь: Перм. гос. техн. ун-т, 2000. – 72 с.	50
4	Ильюшин А.А. Пластичность. Ч. 1: Упруго-пластические деформации / Авт. предислов. Е.И. Шемякина [и др.] .— 2004 .— 376 с. : ил. — Библиогр.: с. 370-372 .— Имен. указ.: с. 373 .— Предм. указ.: с. 374-376.	10
5	Нанотехнологии : учебное пособие для вузов : пер. с англ. / Ч. Пул, Ф. Оуэнс .— Москва : Техносфера, 2004 .— 327 с : ил.	3
6	Матвиенко Ю.Г. Модели и критерии механики разрушения. М.: Физматлит, 2006328 с.	3
	2.2 Периодические издания	
1	Научно-технический журнал «Вестник ПНИПУ. Аэрокосмическая техника»	
2	Научно-технический журнал «Вестник ПНИПУ. Механика»	

6.2.1. Информационные и информационно-справочные системы

- **1.** Электронная библиотека Пермского национального исследовательского политехнического университета [Электронный ресурс] : [полнотекстовая база данных электрон. док., издан. в Изд-ве ПНИПУ] / Перм. нац. исслед. политехн. ун-т, Науч. б-ка. Пермь, 2016. Режим доступа: http://elib.pstu.ru, свободный. Загл. с экрана.
- 2. Электронно-библиотечная система Издательство «Лань» [Электронный ресурс] : [полнотекстовая база данных : электрон. версии кн., журн. по гуманит., обществ., естеств. и техн. наукам] / Электрон.-библ. система «Изд-ва «Лань». Санкт-Петербург, 2010-2016. Режим доступа: http://e.lanbook.com, по IP-адресам компьютер. сети Перм. нац. исслед. политехн. ун-та. Загл. с экрана.
- 3. Научная Электронная Библиотека eLibrary [Электронный ресурс : полнотекстовая база данных : электрон. журн. на рус., англ., нем. яз. : реф. и наукометр. база данных] / Науч. электрон. б-ка. Москва, 1869- . Режим доступа: http://elibrary.ru/. Загл. с экрана.

- 4. Web of Science (Web of Knowledge) [Electronic resource : реф. и наукометр. базаданных на англ. яз. по всем отраслям знания] / Thomson Reuters. New York, 2001- . Режим доступа: http://apps.webofknowledge.com/. Загл. с экрана.
- 5. Электронная библиотека диссертаций РГБ [Электронный ресурс] : [полнотекстовая база данных : электрон. версии дис. и автореф. дис. по всем отраслям знания] / <u>Электрон. б-ка дис.</u> Москва, 2003-2016. Режим доступа: http://diss.rsl.ru, компьютер. сеть Науч. б-ки Перм. нац. исслед. политехн. ун-та. Загл. с экрана.

7. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

7.1. Основное учебное оборудование. Рабочее место аспиранта.

6.

Таблица 4

№ п.п.	Наименование и марка оборудования (стенда, макета, плаката, лабораторное оборудование)	Кол-во, ед.	Форма приобретения / владения (собственность, оперативное управление, аренда и т.п.)	Номер аудитории
1	2	3	4	5
1	Компьютер (в составе Intel(R) Core(TM)i3CPU@2.93ГГц, 3.6ГБ ОЗУ)	12	Оперативное управление	403
2	Проектор PanasonicPT- LB78V	1	Оперативное управление	404
3	Экран	1	Оперативное управление	404

8. Фонд оценочных средств

Освоение учебного материала дисциплины запланировано в течение одного семестра. Формой контроля освоения результатов обучения по дисциплине является зачет, проводимый с учетом результатов текущего контроля.

8.1. Описание показателей и критериев оценивания, описание шкал оценивания.

Контроль качества освоения дисциплины включает в себя текущий контроль успеваемости и промежуточную аттестацию аспирантов

Текущий контроль

Текущий контроль успеваемости обеспечивает оценку освоения дисциплин и проводится в форме собеседования и защиты отчета о творческом задании.

• Собеседование

Для оценки знаний аспирантов проводится собеседование в виде специальной беседы преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной для выяснения объема знаний по определенному разделу, теме, проблеме.

Собеседование может выполняться в индивидуальном порядке или группой аспирантов.

• Защита отчета о творческом задании

Для оценки **умений и владений** аспирантов используется творческое задание, имеющее нестандартное решение и позволяющее интегрировать знания различных областей, аргументировать собственную точку зрения.

Творческие задания могут выполняться в индивидуальном порядке или группой аспирантов.

Промежуточная аттестация

Допуск к промежуточной аттестации осуществляется по результатам текущего контроля. Промежуточная аттестация проводится в виде зачета по дисциплине «Экспериментальная механика конструкционных материалов», в устно-письменной форме.

8.2. Шкалы оценивания результатов обучения:

Оценка результатов обучения по дисциплине «Научный семинар» проводится по шкале оценивания «зачтено», «незачтено» путем выборочного контроля во время зачета.

Типовые шкалы и критерии оценки результатов обучения при сдаче зачета приведены в табл. 5.

Таблица 5 Шкала и критерии оценки результатов обучения на зачете

Оценка	Критерии оценивания
Зачтено	Аспирант уверенно или менее уверенно выступил с устным докладом на научном семинаре. Показал сформированные или содержащие отдельные пробелы знания в рамках усвоенного учебного материала, показал успешное или сопровождающееся отдельными ошибками применение навыков полученных умений при решении профессиональных задач в рамках усвоенного учебного материала. Ответил на большинство дополнительных вопросов правильно.
Незачтено	Аспирант неуверенно выступил с устным докладом на научном семинаре или не подготовил доклад. При ответах аспирант продемонстрировал фрагментарные знания. При ответах на дополнительные вопросы было допущено множество неправильных ответов и неточностей. Продемонстрировал частично освоенное умение и применение полученных навыков при решении профессиональных задач в рамках усвоенного учебного материала.

9. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине

Задания для текущего контроля и проведения промежуточной аттестации должны быть направлены на оценивание:

- 1. уровня освоения теоретических понятий, научных основ профессиональной деятельности;
- 2. степени готовности аспиранта применять теоретические знания и профессионально значимую информацию и оценивание сформированности когнитивных умений.
- 3. приобретенных умений, профессионально значимых для профессиональной деятельности.

10. Типовые контрольные вопросы и задания или иные материалы, необходимые для оценки результатов освоения дисциплины

Перечень контрольных вопросов и заданий для сдачи зачета по дисциплине «Моделирование процессов деформирования и разрушения материалов и элементов конструкций» разработан с учетом научных достижений научно-исследовательской школы кафедры.

Типовые творческие задания:

- 1. Моделирование разрушения по совокупности критериев.
- 2. Краевая задача механики неупругого деформирования и разрушения структурно-неоднородных тел.
- 3. Прогнозирование эффективных материальных функций неупругого деформирования.

Типовые контрольные задания:

- 1. Моделирование процессов деформирования и разрушения слоистых композитов.
- 2. Моделирование процессов деформирования и разрушения волокнистых композитов при нагружении в поперечной плоскости.

Полный комплект вопросов и заданий хранится на кафедре ЭМКМ.

Лист регистрации изменений

№ п.п.	Содержание изменения	Дата, номер протокола заседания кафедры. Подпись заведующего кафедрой
1	2	3
1		
2		
3		
4		